Modeling Longer-term Longitudinal Pesticide Exposures to Workers: Seasonal and Lifetime Exposures

Paul S Price M.S. Christine F. Chaisson Ph.D.
The LifeLine Group Inc.
Kristin Macey B.Sc.
PMRA

Presented at
The Society for Risk Analysis Annual Meeting
December, 2003
Topics

• Findings of the recent ILSI RSI workshop on Probabilistic Methods to Assess Worker Exposure to Agricultural Pesticides.
• Recommendations for the collection of data
• Example of longitudinal analysis using payroll data
What is Longitudinal Exposure?

- Exposure that occurs to the same worker over multiple consecutive days
- Also called intra individual variability
- Tracking of doses received on each individual day and averaging the daily doses to determine subchronic and chronic doses
- Must rely on exposure modeling
Findings of the ILSI Workshop

• General conclusion
 – Current data collection (CAL PUR and BEAD) do not support longitudinal
 – We need to do more to quantify inter- and intra-individual variability in general
 – Need to bring time dependencies into the models for proper understanding of
 • Toxicity data
 • Absorption, metabolism, and elimination

• Additional efforts will be required to achieve trustworthy modeling results
Longitudinal Exposures and Toxicity

- Typically a subchronic health benchmark is applied to a one day exposure
- No evaluation of variation in chronic exposure and the implication for longer term endpoints
- Failure to go beyond one day will prevent the proper consideration of the role of duration in characterizing risks
Understanding Temporal Processes Requires Longitudinal Modeling

- Dermal absorption may extend beyond one day
- Accumulation of pesticide and pesticide metabolites in workers
- Duration of processes associated with a health endpoint
 - Time interval to cellular damage
 - Time interval to observed effect
 - Time to recovery
Tailoring an Exposure Assessment to a Health Endpoint Duration

• It is relatively easy to tailor the duration of a longitudinal exposure assessment to the duration of the animal study
• Modeling each day as a separate event and using techniques such as rolling averages allows:
 – Matching the duration of the animal study
 – Demonstrating the sensitivity of the risk characterization to a range of durations
Two Sources of Data on Longitudinal Exposures

• Biomonitoring data on workers
 – Can provide a direct measure of longitudinal exposure for pesticides with persistent metabolites
 – Can be used to calibrate models and independently evaluate model predications

• Data collected for other purposes such as financial or insurance
Ongoing and Future Data Collection Efforts

- Existing data collection efforts could support longitudinal exposure assessments
 - It’s critical to collect data at the individual level rather then at the farm or county level
 - Collection of data on the characteristics of the worker and the event
- Determination of the events that trigger the exposure event
- Specialized studies:
 - Investigate the stability of exposure related behaviors in workers (the dirty worker hypothesis)
 - Studies of specific populations (German worker study)
Illustration of Longitudinal Modeling of Pesticide Exposures in Workers

- Data collected for 47 workers at a pesticide application company (soil fumigation)
- Soil fumigation performed year round
- Data consists of:
 - Acres treated in a given month for each of 47 workers over a 12-month period
 - Variation in air concentrations associated with the tasks that make up the standard workday, and
 - Typical duration for the tasks during a work day.
<table>
<thead>
<tr>
<th>Driver code number</th>
<th>May Tarped</th>
<th>Non-Tarped</th>
<th>June Tarped</th>
<th>Non-Tarped</th>
<th>July Tarped</th>
<th>Non-Tarped</th>
<th>August Tarped</th>
<th>Non-Tarped</th>
<th>September Tarped</th>
<th>Non-Tarped</th>
<th>October Tarped</th>
<th>Non-Tarped</th>
<th>November Tarped</th>
<th>Non-Tarped</th>
<th>December Tarped</th>
<th>Non-Tarped</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>11</td>
<td>148</td>
<td>24</td>
<td>197</td>
<td>54</td>
<td>206</td>
<td>65</td>
<td>2</td>
<td>74</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>105</td>
<td>67</td>
<td>94</td>
<td>129</td>
<td>203</td>
<td>47</td>
<td>3</td>
<td>51</td>
<td>90</td>
<td>17</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>27</td>
<td>48</td>
<td>13</td>
<td>174</td>
<td>28</td>
<td>88</td>
<td>222</td>
<td>74</td>
<td>3</td>
<td>17</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>24</td>
<td>177</td>
<td>123</td>
<td>262</td>
<td>19</td>
<td>4</td>
<td>57</td>
<td>30</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
<td>72</td>
<td>15</td>
<td>112</td>
<td>14</td>
<td>101</td>
<td>16</td>
<td>49</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>117</td>
<td>99</td>
<td>98</td>
<td>203</td>
<td>24</td>
<td>12</td>
<td>20</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>160</td>
<td>107</td>
<td>107</td>
<td>226</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>15</td>
<td>161</td>
<td>161</td>
<td>223</td>
<td>14</td>
<td>2</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>52</td>
<td>122</td>
<td>10</td>
<td>10</td>
<td>255</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>3</td>
<td>164</td>
<td>164</td>
<td>224</td>
<td>14</td>
<td>2</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>31</td>
<td>13</td>
<td>164</td>
<td>164</td>
<td>224</td>
<td>14</td>
<td>2</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>35</td>
<td>160</td>
<td>107</td>
<td>107</td>
<td>226</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>36</td>
<td>6</td>
<td>41</td>
<td>44</td>
<td>271</td>
<td>197</td>
<td>34</td>
<td>30</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>37</td>
<td>13</td>
<td>35</td>
<td>35</td>
<td>156</td>
<td>167</td>
<td>227</td>
<td>43</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>12</td>
<td>102</td>
<td>102</td>
<td>221</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>41</td>
<td>36</td>
<td>68</td>
<td>68</td>
<td>98</td>
<td>271</td>
<td>11</td>
<td>59</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>49</td>
<td>117</td>
<td>99</td>
<td>98</td>
<td>203</td>
<td>24</td>
<td>18</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>71</td>
<td>114</td>
<td>15</td>
<td>15</td>
<td>235</td>
<td>266</td>
<td>18</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>15</td>
<td>161</td>
<td>161</td>
<td>223</td>
<td>14</td>
<td>2</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>79</td>
<td>123</td>
<td>123</td>
<td>226</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>11</td>
<td>34</td>
<td>84</td>
<td>84</td>
<td>241</td>
<td>196</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>26</td>
<td>15</td>
<td>161</td>
<td>161</td>
<td>223</td>
<td>14</td>
<td>2</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>40</td>
<td>1</td>
<td>38</td>
<td>38</td>
<td>130</td>
<td>12</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>41</td>
<td>36</td>
<td>58</td>
<td>58</td>
<td>235</td>
<td>266</td>
<td>18</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>42</td>
<td>16</td>
<td>102</td>
<td>102</td>
<td>221</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>43</td>
<td>134</td>
<td>116</td>
<td>116</td>
<td>217</td>
<td>23</td>
<td>6</td>
<td>22</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>44</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>46</td>
<td>9</td>
<td>43</td>
<td>43</td>
<td>102</td>
<td>13</td>
<td>240</td>
<td>62</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>47</td>
<td>3</td>
<td>42</td>
<td>42</td>
<td>104</td>
<td>74</td>
<td>181</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>487</td>
<td>99</td>
<td>703</td>
<td>702</td>
<td>1653</td>
<td>215</td>
<td>3678</td>
<td>638</td>
<td>5469</td>
<td>887</td>
<td>6376</td>
<td>2234</td>
<td>1055</td>
<td>1414</td>
<td>321</td>
<td>1061</td>
</tr>
<tr>
<td>Sample</td>
<td>Set-up</td>
<td>Drivers Air conc.</td>
<td>Lunch and Takedown</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.903</td>
<td>0.459</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ND</td>
<td>0.337</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.423</td>
<td>0.184</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.052</td>
<td>0.366</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.251</td>
<td>1.536</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.245</td>
<td>0.146</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.087</td>
<td>0.252</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.397</td>
<td>0.201</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>0.122</td>
<td></td>
</tr>
</tbody>
</table>

ND: Non detect
Longitudinal Exposure in Soil Fumigators

- Using these data, the number of days worked per month per worker can be estimated
Figure 1. Days Worked Each Month by Each Worker
Longitudinal Exposure in Soil Fumigators

• Using these data an estimate of the number of days worked per month per worker

• Using the “day per month” data a Monte Carlo model of each workers’ longitudinal exposures over a one year period is prepared.
 – Probability of working on a given day is based on worker’s days worked per month
 – Each day modeled independently
 – Air concentrations sampled independently
Longitudinal Exposure in Soil Fumigators

- Using these data an estimate of the number of days worked per month per worker
- Using the “day per month” data a Monte Carlo model of each workers’ longitudinal exposures over a one year period is prepared.
 - Probability of working on a given day is based on worker’s days worked per month
 - Each day modeled independently
 - Air concentrations sampled independently
- Exposure is expressed as average air concentration over 24 hours
- Data on individual days averaged using a rolling average approach
Longitudinal Exposure in Soil Fumigators

- Using these data an estimate of the number of days worked per month per worker
- Using the “day per month” data a Monte Carlo model of each workers’ longitudinal exposures over a one year period is prepared.
 - Probability of working on a given day is based on worker’s days worked per month
 - Each day modeled independently
 - Air concentrations sampled independently
- Exposure is expressed as average air concentration over 24 hours
- Data on individual days averaged using a rolling average approach
- Distributions of 24-hour TWA air concentrations were prepared for 1-, 7-, 30-, 90- and 365-day averaging periods
Figure 2. Cumulative Distribution of Average Daily Exposure

- 1- DAY
- 7- DAY
- 30- DAY
- 90- DAY
- 365- DAY

Cumulative Fraction of Values

ppb

Cumulative Fraction of Values

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Results

• The dose for the median exposed individual ranged from
 – 0.9 ppb for 1-day measurements to
 – 0.01 ppb for 365-day averages.

• The dose at the 95th percentile ranged from
 – 0.2 ppb for 1-day measurements to
 – 0.03 ppb for 365-day averages
Summary

- Modeling longitudinal exposure will improve the risk assessment process.
- The collection of different types of data will be required to support such assessments.
- Modeling will play a large role in the process.